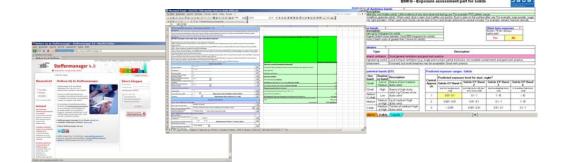


# Evaluation of Tier 1 tools for estimating occupational exposure

Martie van Tongeren

INSTITUTE OF OCCUPATIONAL MEDICINE


www.iom-world.org

## background



- REACH advocates at tiered approach for the safety of use of chemicals.
- REACH heavily relies on efficient, simple tools for exposure assessment (tier 1 tools)
- However, despite being used heavily within REACH, little independent evidence exist on the performance of these tools.
- BAuA initiatated and funded the eteam project

### eteam Project



- Funded by BAuA
- Collaboration between IOM and Fraunhofer-ITEM
- Advisory Board, consisting of
  - Tool developers (ECETOC, TNO/ArboUnie, BAuA, EBRC)
  - Major data providers (IFA, NIOSH, HSE, SECO)
- Links with other projects (Switzerland, US, Sweden)

#### Tools



- ECETOC TRA Versions 2 & 3
- EMKG-EXPO-Tool
- MEASE Version 1.02.01
- Stoffenmanager Version 4.5
- RISKOFDERM Version 2.1

# Aims of eteam Project



- Evaluate the scientific basis of the tools
- Determine their user-friendliness
- Assess the between-user reliability
- External validation of tool estimates via comparison with measurement data
- Provide practical recommendations to developers, users and regulators on how to use the tools most effectively

# Aims of eteam Project



- Evaluate the scientific basis of the tools
- Determine their user-friendliness
- Assess the between-user reliability
- External validation of tool estimates via comparison with measurement data
- Provide practical recommendations to developers, users and regulators on how to use the tools most effectively

### **BURE** study



- To determine the reliability of the tool or tool users
- Recruited 150-200 tool users in Europe and elsewhere
- Each participant was asked to assess inhalation and dermal exposure for 20 scenarios
  - Standard 1 page A4 format
  - Textual description of typical workplace exposure settings
  - Professional & industrial settings



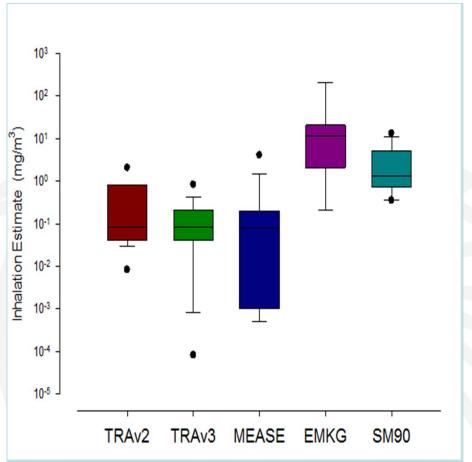


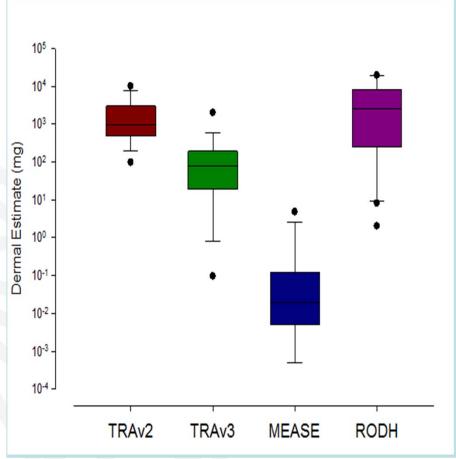




#### Results: BURE participant population | \( \) \( \) \( \)




- 146 participants, performing in total 4066 assessments
  - 57% were consultants or industry
  - 84% from EU
- Experience of tools
  - Most experience of ECETOC TRAv2/v3, then Stoffenmanager

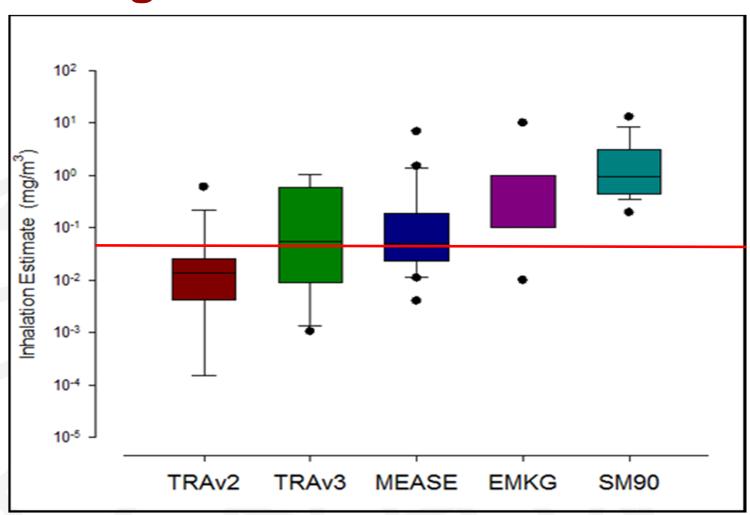

#### Assessor-related variation/ total variationapplicable situations only



| Tool                                | N   | Var <sub>Total</sub> | Ratio<br>(97.5%ile:<br>2.5%ile) |
|-------------------------------------|-----|----------------------|---------------------------------|
| Inhalation exposure                 |     |                      |                                 |
| ECETOC TRAv3 (mg/m³)                | 326 | 2.59                 | 549                             |
| ECETOC TRAv2 (mg/m³)                | 365 | 2.28                 | 372                             |
| MEASE (mg/m <sup>3</sup> )          | 151 | 4.44                 | 3866                            |
| EMKG-EXPO-TOOL (mg/m <sup>3</sup> ) | 313 | 3.23                 | 1147                            |
| STOFFENMANAGER(mg/m³)               | 280 | 1.77                 | 184                             |
| Dermal exposure                     |     |                      |                                 |
| ECETOC TRAv3 (mg/kg/day)            | 326 | 1.93                 | 231                             |
| ECETOC TRAv2 (mg/kg/day)            | 365 | 1.31                 | 88                              |
| MEASE (mg)                          | 151 | 4.66                 | 4732                            |
| RISKOFDERM (hands) (mg)             | 674 | 6.40                 | 20270                           |








Inhalation estimates

Dermal estimates

# **Exposure to Nickel during packing**





#### **External validation**



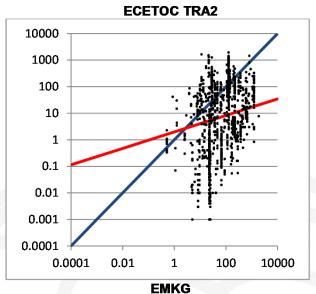
- Exposure measurement data and descriptive contextual information were collected from a wide variety of data providers
  - Advisory Board members (BAuA, EBRC, HSE, IFA, NIOSH, SECO)
  - Lund University, BEAT dermal database
  - Project team: ITEM and IOM
- Personal samples
  - Powders/ liquids/ metal processing fumes/ metal abrasion
  - Mix of task-based and time weighted average representative samples
  - REACh-relevant where possible
- Inhalation and dermal data sought, however dermal data limited in scope and quality

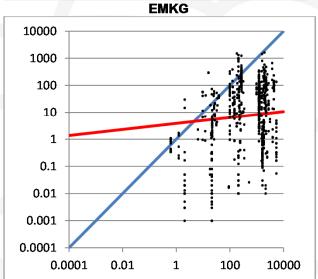
#### Coding of situations into the tools

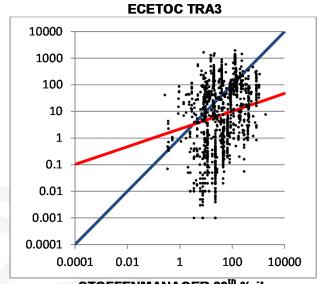


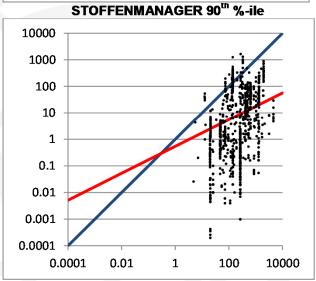
- Team of experienced exposure scientists
- Quality control manual
  - "Best" option chosen in first instance
  - Agreed defaults where the description was unclear "middle" option chosen
  - Recorded level of uncertainty in choice
  - Coding meetings
  - Data checking
    - Data checking
      - Outliers
      - Consistency checks across tools and scenarios
      - Blind recoding of 10% of situations

# Summary tool performance for IOM® volatile liquids





|                       | Individual<br>data  |                     | Individual and aggregated data |      |      |  |
|-----------------------|---------------------|---------------------|--------------------------------|------|------|--|
|                       | $\frac{u}{R_{ind}}$ | GM <sub>ratio</sub> | nM                             | nM>T | %M>T |  |
| ECETOC TRAv2          | 0.35                | 0.1                 | 1842                           | 485  | 26   |  |
| ECETOC TRAv3          | 0.34                | 0.2                 | 1842                           | 586  | 32   |  |
| <b>EMKG-EXPO-TOOL</b> | 0.28                | 0.03                | 1372                           | 70   | 5    |  |
| STM 75th percentile   | 0.54                | 0.1                 | 1854                           | 359  | 19   |  |
| STM 90th percentile   | 0.54                | 0.04                | 1854                           | 209  | 11   |  |


#### Tool comparison for volatile liquids




(individual data only)

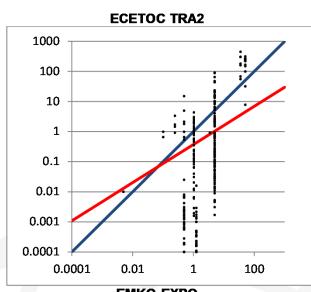


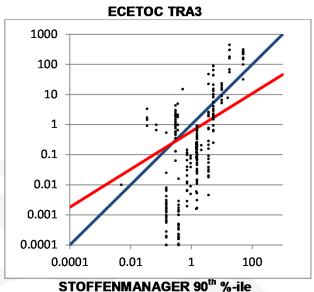


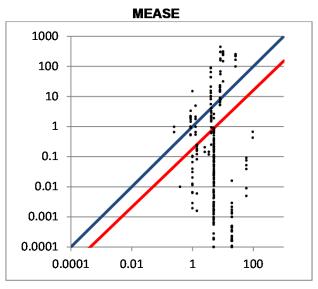


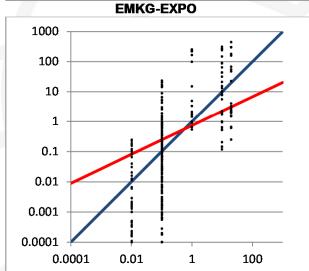


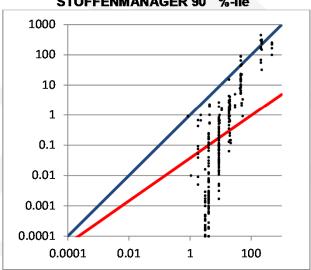
# Summary tool performance for | | | | | | | powders





|                       | Individual I                         |      | ndividual and aggregated |      |      |  |
|-----------------------|--------------------------------------|------|--------------------------|------|------|--|
|                       | data                                 |      | data                     |      |      |  |
|                       | R <sub>ind</sub> GM <sub>ratio</sub> |      | nM                       | nM>T | %M>T |  |
| ECETOC TRAv2          | 0.59                                 | 0.05 | 1101                     | 180  | 16   |  |
| ECETOC TRAv3          | 0.69                                 | 0.1  | 1101                     | 231  | 21   |  |
| MEASE                 | <0                                   | 0.02 | 1081                     | 115  | 11   |  |
| <b>EMKG-EXPO-TOOL</b> | 0.7                                  | 0.6  | 1063                     | 184  | 17   |  |
| STM 75th percentile   | 0.83                                 | 0.04 | 1101                     | 90   | 8    |  |
| STM 90th percentile   | 0.83                                 | 0.01 | 1101                     | 33   | 3    |  |


#### Tool comparison for powders


(individual data only)














#### Conclusions – volatile liquids



- Reasonable amount of data
- Tools appear to be reasonably conservative, in particular when estimating high exposure levels
  - EMKG, ECETOC TRAv2 and v3 less than MEASE and STOFFENMANAGER
- Model estimates appear to follow exposure measurements pretty well (better than for volatile liquids)

#### Conclusions – Powders



- Reasonable amount of data
- Tools appear to be conservative, again in particular for high exposures
- Ithough EMKG-EXPO-Tool less so than others
- Good correlation with measurement results for ECETOC TRAv2, ECETOC TRAv3 and STM (~0.8)
- Less correlation for EMKG-EXPO-Tool and no for MEASE

#### Discussion/Conclusions



- Limitations of the study
  - Data representativeness
  - Coding of exposure scenarios perhaps not done as Industry would do under REACH
- However, large between-user reliability remains a concern
  - Requires efforts to improve use of models
  - Training, certification, team coding, etc
- Tools appear conservative for volatile liquids and powders, in particular for high exposures levels
- However, in particular for TRAvs2 and vs3 care should be taken when using these tools for estimating exposure levels < 100 mg/m3</li>

# Acknowledgements



- IOM: Judith Lamb, John Cherrie, Karen Galea, Laura MacCalman, Brian Miller, Shaz Rashid
- Fraunhofer ITEM: Susanne Hesse, Stefan Hahn
- Advisory Board
  - BAuA (funding)
  - Tool developers (TNO/Arbo-Unie, ECETOC, BAuA, EBRC)
  - Major data providers (IFA, NIOSH, HSE, SECO)
- Other data providers (Lund University)
- BURE and workshop participants