

Noise control to improve employee satisfaction in offices - What should we measure and how should we promote better design?

Valtteri Hongisto Senior research scientist, FIOH @ Turku Adjunct professor, Aalto University @ Helsinki +358405851888 <u>valtteri.hongisto@ttl.fi</u> SAFE Workshop, Dortmund Germany 4-5 November 2015 Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA)

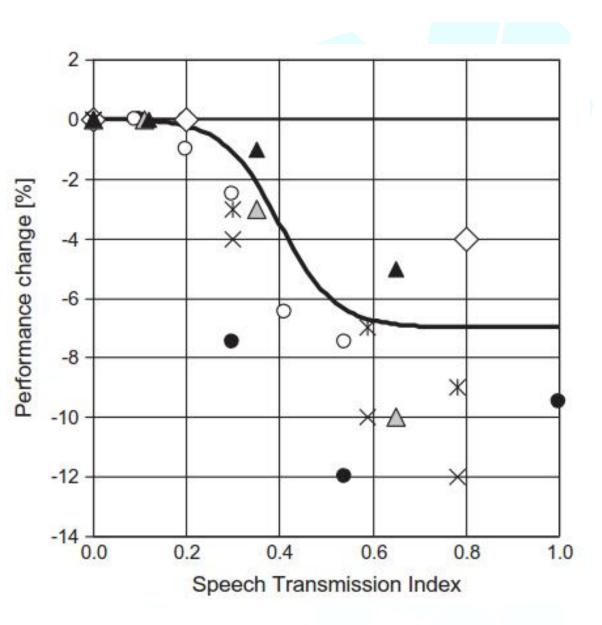
Effects of bad acoustics and excessive noise in offices

- Lack of speech privacy
 - feeling of being overheard
 - feeling of disturbing someone
- Concentration difficulties \rightarrow
- Reduction of cognitive performance
- Communication difficulties
- Bad ambience (relationships)
- Reduced environmental dissatisfaction
- Stress, distress
- Sick-leaves
- Increased turnover
- Use of various coping methods
- Work management problems
- Excess of remote work

Noise levels in open-plan offices

- Trompette & Chatillon 2012 J Occup Env Hyg
- Noise levels can vary significantly between openplan offices
- 54 ... 86 dB L_{eq,8h} (France)
- 21 offices, 117 operators



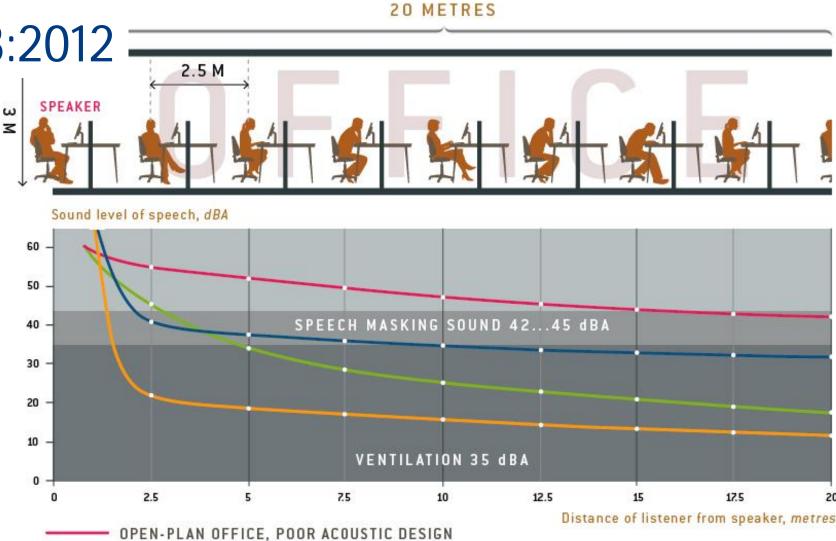

FIGURE 5. Distribution of noise exposure levels for 117 operators.

Performance vs. STI

Jahncke, Hongisto, Virjonen 2012 Appl Acoust Hongisto 2005 Indoor Air

- Ellermeier and Hellbrück (1998) Exp. 2A [12]
- O Ellermeier and Hellbrück (1998) Exp. 2B]12]
- Venetjoki et al. (2006) [13]
- △ Haka et al. (2009) Task1 [14]
- Haka et al. (2009) Task2 [14]
- × Schlittmeier et al. (2008) Exp. 1 [15]
- X Schlittmeier et al. (2008) Exp. 2 [15]

Is my talking noise then?


Kaarlela-Tuomaala et al. 2009 Ergonomics

- Employee ratings were collected before and after the relocation
 - 1. First in private room office,
 - 2. Thereafter in an open plan office
- The same noise levels in both office types (50-52 dB L_{Aeq7h})
 - Variability of noise $L_{A1\%}$ - $L_{A99\%}$ was larger in 1
- Environmental satisfaction (p<0.05) and acoustic satisfaction (p<0.01) better in 1
- Noise level meter cannot determine when the sound is noise
- Acousticians' way of coping with this philosophical problem:
 - Focus on room & building acoustic design
 - Forget the people, because you cannot know how they behave.
 - Expect that conversations (not noise) takes place with short distances

ISO 3382-3:2012

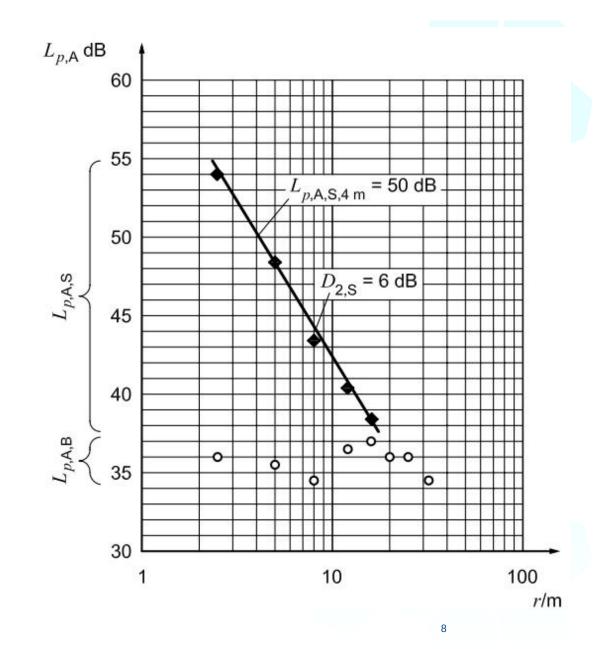
- All distances
- STI
- SPL of speech
- Normal effort of speech
- Empty room
- Make the outcome simple to be understood by architects and users
- Forget frequencies
- Create target values

OPEN-PLAN OFFICE, BEST POSSIBLE ACOUSTIC DESIGN

SINGLE-ROOM OFFICE, DOORS CLOSED

SINGLE-ROOM OFFICE, DOORS OPEN

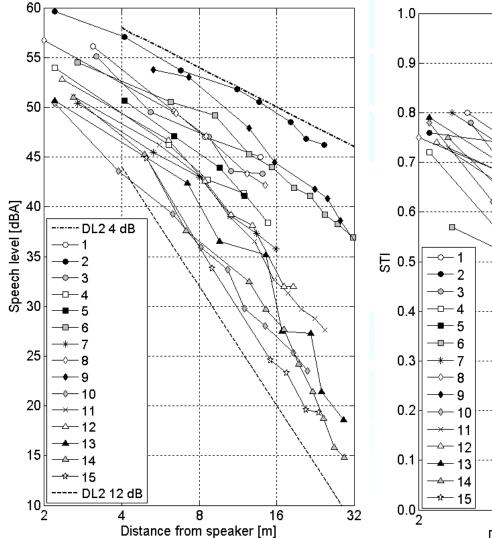
Finnish Institute of Occupational Health

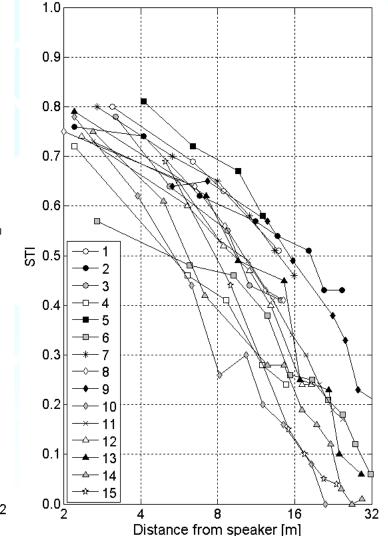

ISO 3382-3:2012 Quantity 1: STI P Radius of distraction, r_D

- STI depends on
 - Signal-to-noise ratio
 - Early Decay time
- Work performance improves when Speech Transmission Index, STI, is less than 0.5
- The distance from a speaker at which STI falls below 0.5
- r_D in metres which is very convenient

Finnish Institute of Occupational Health

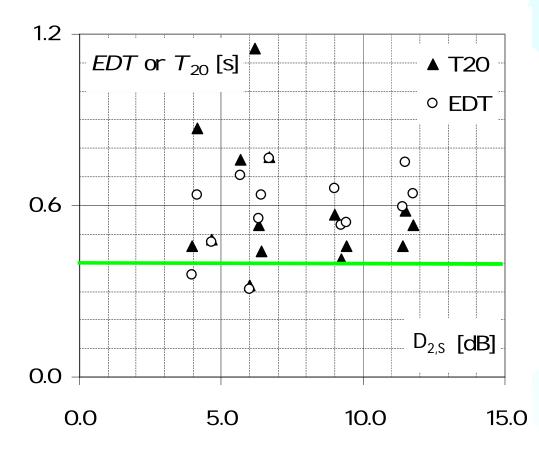
 very sensitive to masking, so that it cannot be used alone as a room acoustic descriptor 0.9 0.8 0.7 0.6 0.5 0,4 $r_{\rm D} = 14 {\rm m}$ 0.3 0.2 0,1 $r_{\rm P} = 31 \, {\rm m}$ 0 10 20 30 40 0 r/m ISO 3382-3:2012 Quantity 2: Spatial decay rate of A-weighted speech, DL₂


- A-weighted level of speech at 4 metres
 - Interpolated
- Reduction of A-weighted SPL of speech per distance doubling
 - Fitted



ISO 3382-3 data

- 16 offices with varying
 - Absorption
 - Screen height
 - Room size
 - Background noise
- Huge potential for improving the acoustic privacy by design



Virjonen et al. 2009 Acta Acust united Ac

ISO 3382-3 excluded reverberation time

Reverberation time describes the *temporal decay* of sound in selected point

Workers desire strong *spatial* <u>*decay*</u> of sound from different directions of the office

RT and DL2 does not work as a primary design parameter!

(N=15)

Finnish standard, SFS 5907

ISO 3382-3 lacks suggestions for recommended values

Virjonen et al. 2009 Acta Acust united Ac

Class	Acoustic classification	r _D [m]	DL ₂ [dB]
А	Excellent	5 or less	11 or more
В	Good	5 to 8	8 to 11
С	Fair	8 to 11	5 to 8
D	Poor	11-15	3-5

Class E: Values do not fulfill Class D

Normal voice level (59 dB at 1 m) shall be used in r_D determination

ABC of Acoustic Privacy

- Absorb Maximize absorption in ceiling, walls and screens
- Block Use high screens where privacy is needed
- Cover Use artificial speech masking

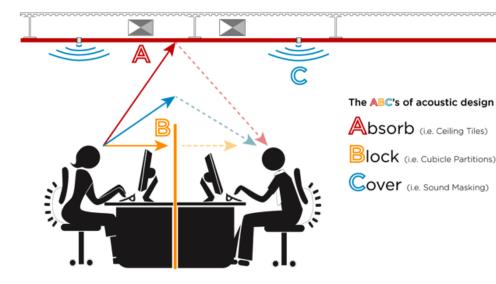
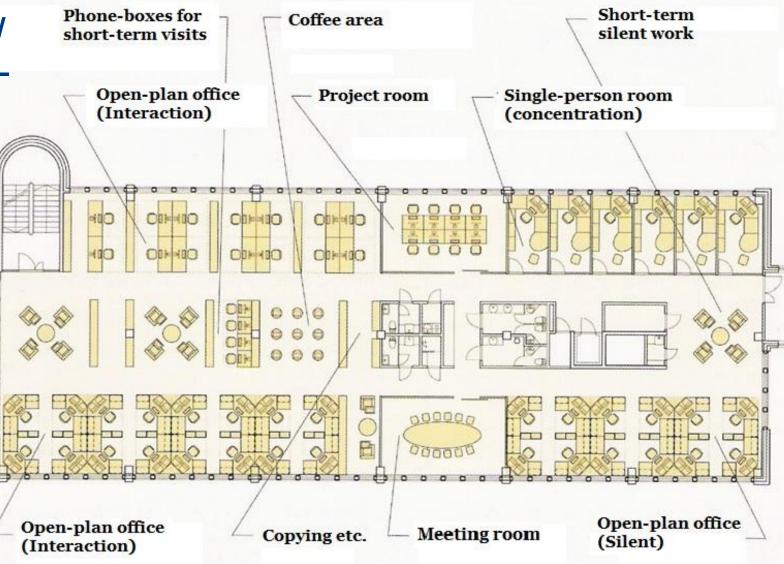
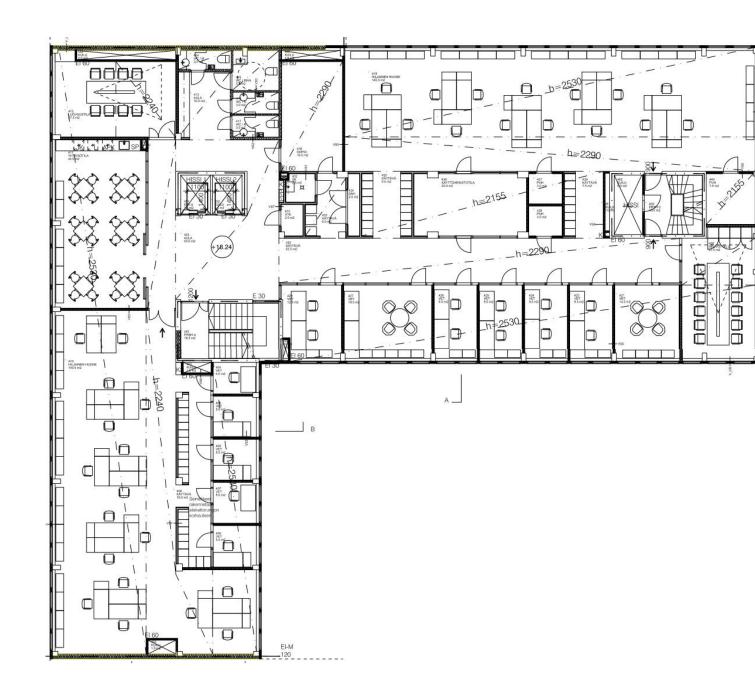



Figure: Cambridge Sound Management


Noise control by layout – Activitybased offices

Activity-based office - Case

- Good results
- Fixed workstation for all in open space
- Anonymous work rooms available nearby
 - One room per three workstations

Furniture ensembles

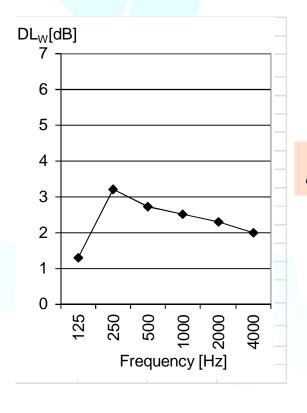
- The sales is exploding
- ISO standard for determining the acoustic performance is lacking

All figures are taken from the Internet

Furniture ensembles

- Standard reverberation room
- Noise reduction in 125-4000 Hz
- Speech reduction index D_s

-W1


Finnish Institute of

Occupational Health

Hongisto et al. 2015 Accepted to Acta Acust united Ac

 $DL_W = L_{W,1} - L_{W,2}$ $D_{S} = L_{W,S,A,1} - L_{W,S,A,2}$

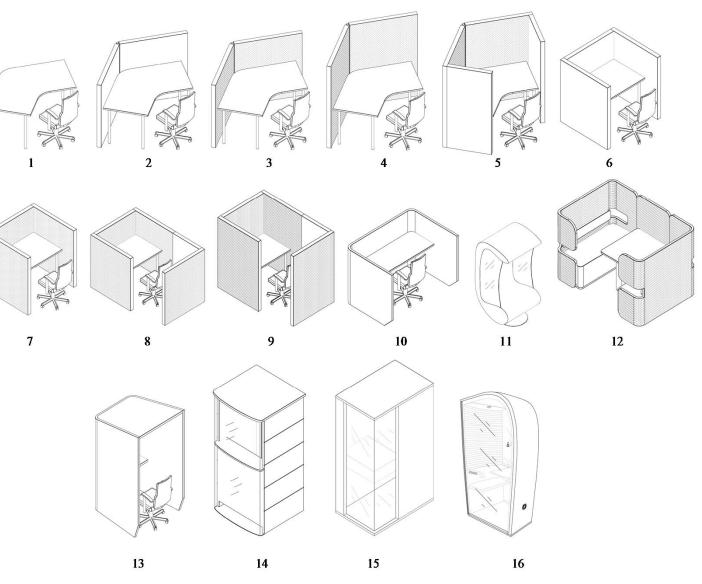
 $D_{\rm S} = 2.6 \, {\rm dB}$

Hongisto et al. 2015 Accepted to Acta Acust united Ac

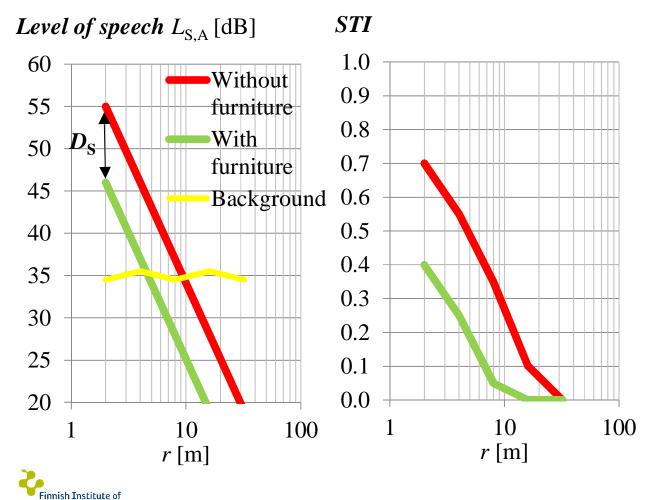
Furniture ensembles

$$L_{W1}$$

Furniture ensembles


Hongisto et al. 2015 Accepted to Acta Acust united Ac

18


Specimen	<i>D</i> s [dB]
1	0.0
2	0.2
3	0.6
4	1.0
5	1.5
6	0.6
7	1.8
8	2.6
9	4.0
10	0.8
11	3.9
12	1.9
13	2.8
14	18.5
15	22.4
16	19.8
	•

5

Finnish Institute of Occupational Health

Furniture ensembles – in the eyes of ISO 3382-3

Occupational Health

• Example: D_S=6 dB

	r _D	D_{2S}	L _{pA4m}
	[m]	[dB]	[dB]
Without furniture	5	9	44
With furniture	0	9	35
CHANGE	-5	0	-9

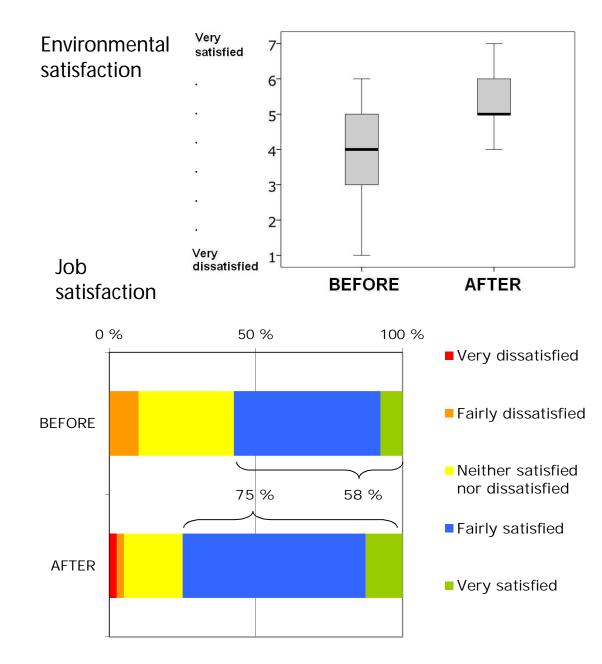
Holistic approach: Acoustics as a part of design process

Physical factors

- 1. Spatial density (m²/person)
- 2. Architectural layout & functionality
- 3. Acoustics
- 4. Air conditioning
- 5. Window view, natural light
- 6. Lighting
- 7. Ergonomics at the workstation
- 8. Interior design
- 9. Environment

Psychological factors

- Ask the employees about the factors of environmental dissatisfaction
- Focus on these factors during the office design
- Involve of employees during change design
- Management of change
- Personal control of physical factors



Sonera case

- Open-plan office 2500 m²
- Number of physical factors were improved at once
 - acoustics, lighting, interiors, activity based design
- Most psychological factors were well taken into account
- Quasi-field experiment (N=40)
 - Questionnaire before & after the refurbishment
- Large improvement in nearly all subjective measures related with the perception of the office and environmental factors

Hongisto et al. 2015 Under Review in *Journal X*

ABCDEFG of Acoustic Design

Absorb	Maximize absorption in ceiling, walls and screens		
Block	Use high screens where privacy is needed		
Cover	Use artificial speech masking		
Distance	Avoid desk-to-desk distances less than 2.5 m		
Etiquette	Agreement about the use of the space and behaviour in the space		
Floor	Soft floor coverings		
Group	Group the teams for efficient communication		
Holism	Remember the entirety: 1+1+1=10		
solation	Sufficient sound insulation to achieve privacy in pods, rooms, booths		
J	?		

