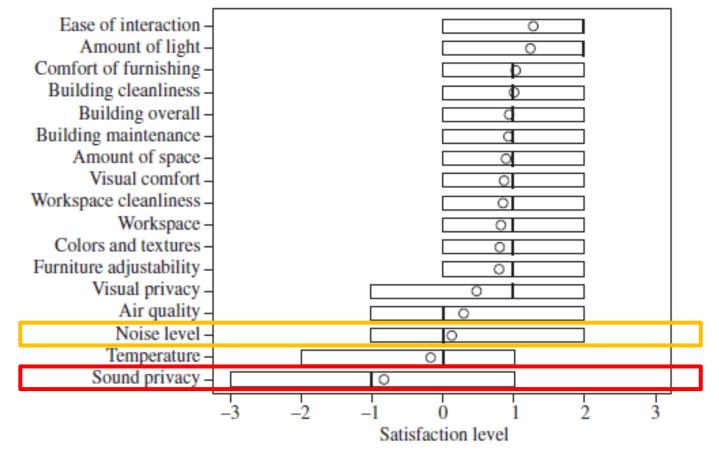
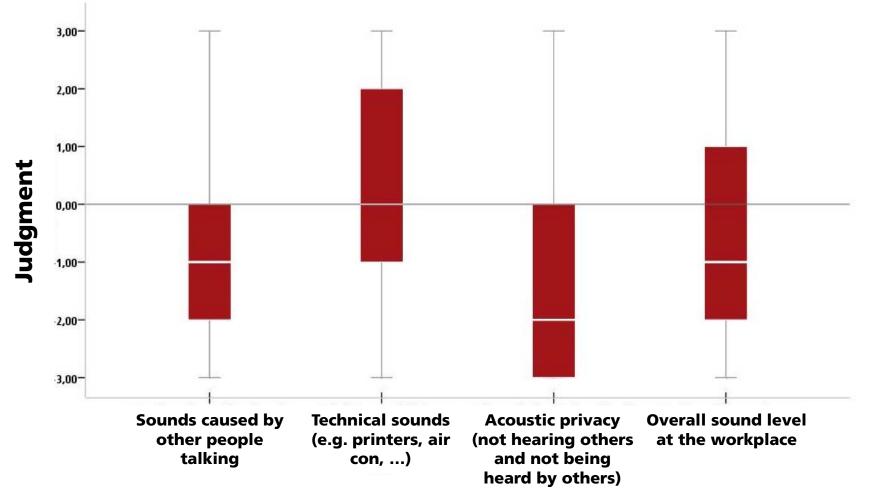
Perception- and effect-related evaluation of open-plan office acoustic design

Dr. Andreas Liebl

Fraunhofer Institute for Building Physics


Department Acoustics, Stuttgart


© Fraunhofer IBP

Status quo

Judgments of satisfaction with regard to different aspects of the working environment (Frontczak et al., 2012; n = 52.980)

Status quo

Judgments of satisfaction with regard to different aspects of the acoustic working environment (Liebl et al., 2011; n = 659)

VDI 2058-3: 2014-08 Assessment of noise in the working area with regard to specific operations

Job Classification	Target Value Rating Level L _r dB		
predominant cognitive work	≤ 55		
simple or practiced office work or comparable work	≤ 70		
other work	> 70		

Recommended rating level for different job classifications

Upcoming

VDI 2569: Draft 2014-01 Sound protection and acoustical design in offices

Room		T _n			
Acoustics Category	Requirements to room acoustical parameters	125 Hz	250 Hz bis 4000 Hz	L _{NA, Bau}	
Α	2/3 of measuring paths Level 1 Remaining paths at least Level 2	≤ 0,8 s	≤ 0,6 s	≤ 35 dB	
В	2/3 of measuring paths Level 2 Remaining paths at least Level 3	≤ 0,9 s	≤ 0,7 s	\leq 40 dB	
С	1/3 of measuring paths Level 2 Remaining paths at least Level 3	≤ 1,1 s	≤ 0,9 s	\leq 40 dB	

Requirements to room acoustical parameters and to the maximum building noise levels in open-plan offices

5

🗾 Fraunhofer

Upcoming

VDI 2569: Draft 2014-01 Sound protection and acoustical design in offices

Level	D _{2, S} [dB]	L _{p,S,4m} [dB]
1	≥ 8	≤ 47
2	≥ 6	≤ 49
3	≥ 4	≤ 51

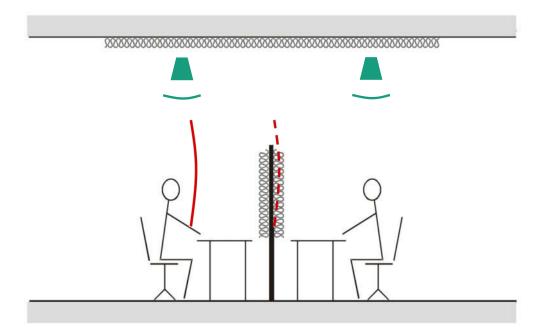
Requirements to room acoustical parameters for the classification of measuring paths

Will this help?

Experiment I: Research Question and Variables

Research Question:

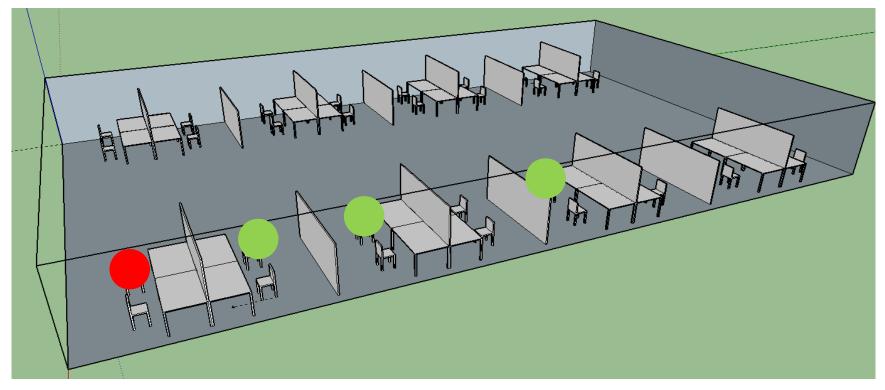
Is it possible to differentiate the room acoustics categories defined in the draft of VDI 2569 by means of perceptual and cognitive psychology?


Independent Variables:

- Room acoustics category (A, B, C)
- Distance from speaker (3,2 m; 6,2 m; 12,3 m)
- Sound masking (signal to noise ratio -5dB)

Dependent Variables:

- Working memory performance (serial recall task)
- Workload (NASA-TLX)
- Annoyance (in the style of ISO/TS 15666)


typically noise (e.g. pink noise) $L_p \le 42 \text{ dB}$ (A)

© Fraunhofer IBP

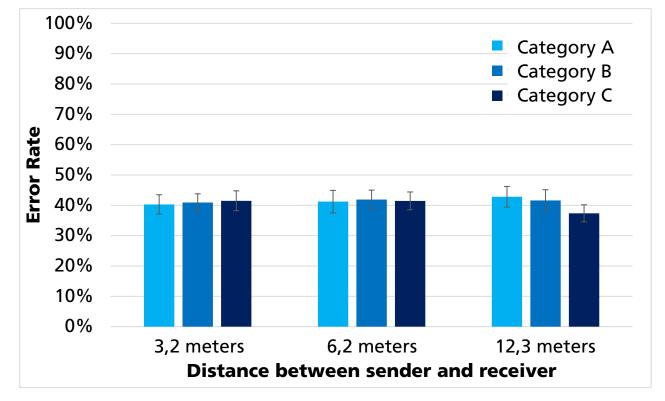
Experiment I: Method

- Auralisation of room acoustics categories according to draft VDI 2569 with ODEON
- Additional sound masking with speech noise (only category A)

Room model corresponding to the draft of VDI 2569 as basis for auralisation

Experiment I: Method

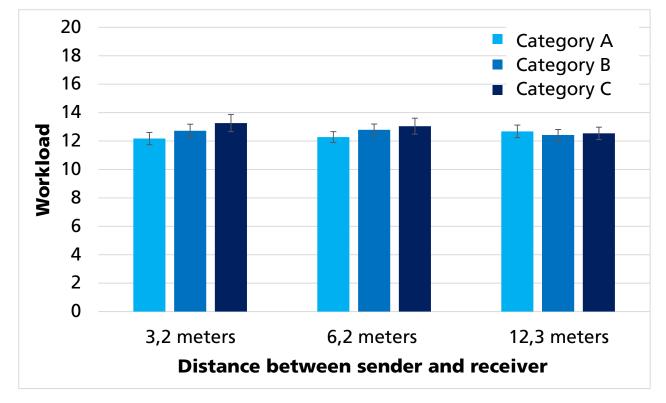
24 participants (Ø 24 years; 79% female, 21% male)


Distance	3,2		6,2		12,3	
Room Acoustics Category	Speech level	Signal to noise ratio	Speech level	Signal to noise ratio	Speech level	Signal to noise ratio
А	51.3	16.3	39.6	4.6	34.9	-0.1
В	51.6	11.6	41.1	1.1	37.6	-2.4
С	51.7	11.7	42.8	2.8	39.5	-0.5
A+Masking	51.3	-5	39.6	-5	34.9	-5

Speech level and signal to noise ratios of the experimental conditions

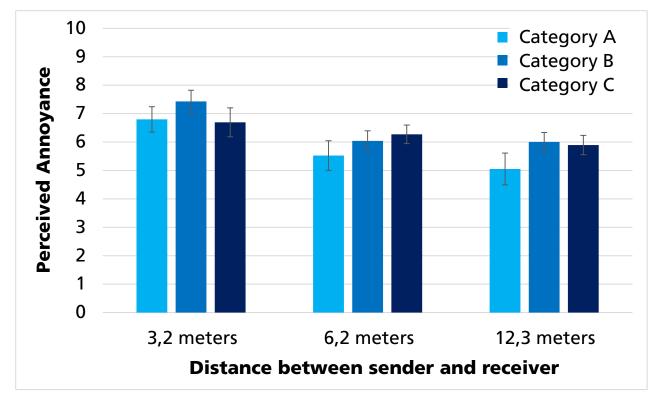
- Room acoustics category:
- Distance:
- Interaction:

 $\begin{aligned} F(2,46) &= 0.323, \, p > .05, \, \eta = 0.014 \\ F(2,46) &= 0.269, \, p > .05, \, \eta = 0.012 \\ F(4,92) &= 1.383, \, p > .05, \, \eta = 0.057 \end{aligned}$



Error Rate (serial recall task)

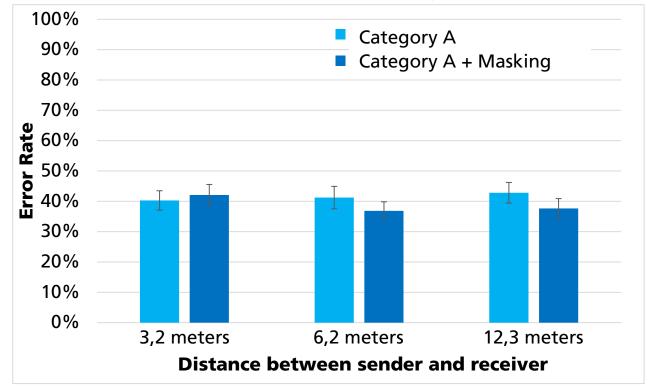
- Room acoustics category:
- Distance:
- Interaction:


 $\begin{aligned} F(2,36) &= 1.461, \, p > .05, \, \eta = 0.075 \\ F(2,36) &= 0.189, \, p > .05, \, \eta = 0.01 \\ F(4,72) &= 0.937, \, p > .05, \, \eta = 0.049 \end{aligned}$

Workload (NASA-TLX)

- Room acoustics category:
- Distance:
- Interaction:

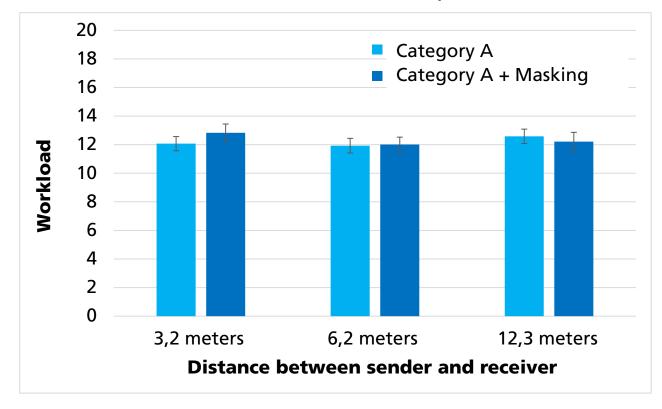
 $\begin{array}{l} F(2,36) = 1.409, \, p > .05, \, \eta = 0.073 \\ F(2,36) = 13.787, \, p < .01, \, \eta = 0.434 \\ F(4,72) = 0.760, \, p > .05, \, \eta = 0.041 \end{array}$



Annoyance (in the style of ISO/TS 15666)

- Distance 3,2 meters: t(23) = 0.738, p > .05
- Distance 6,2 meters:
- Distance 12,3 meters:

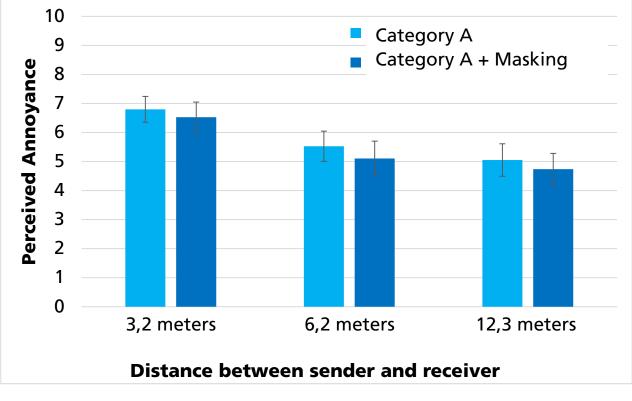
t(23) = 0.738, p > .05t(23) = 1.590, p > .05t(23) = 1.970, p = .033



Error Rate (serial recall task)

- Distance 3,2 meters: t(2)
- Distance 6,2 meters:
- Distance 12,3 meters:

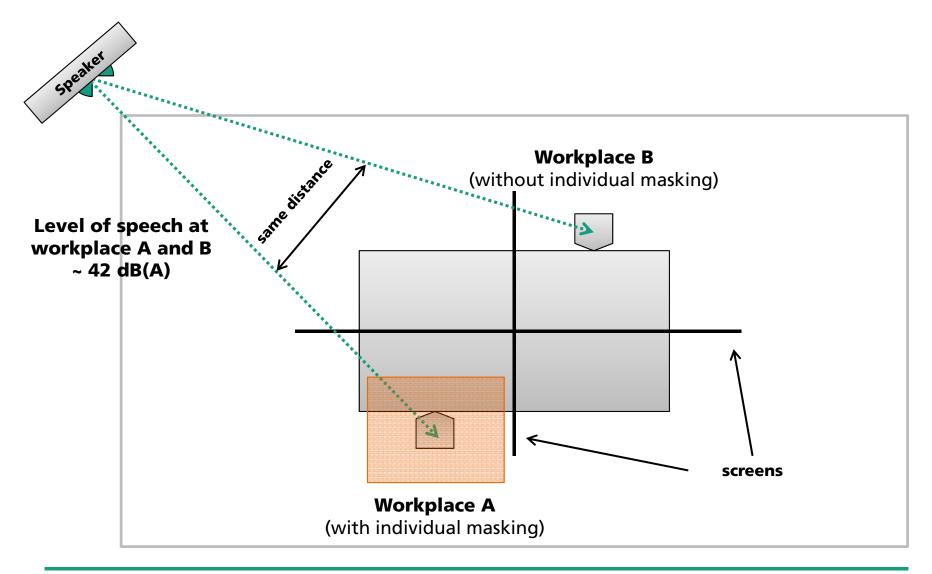
t(18) = 1.202, *p* > .05 *t*(18) = 0.018, *p* > .05 *t*(18) = 0.638, *p* > .05



Workload (NASA-TLX)

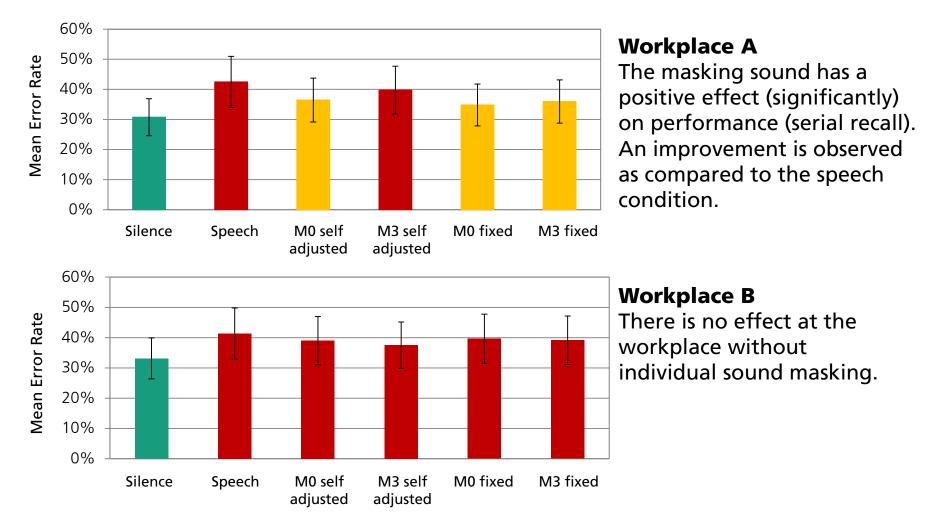
- Distance 3,2 meters:
- Distance 6,2 meters:
- Distance 12,3 meters:

t(18) = 0.395, p > .05 t(18) = 0.479, p > .05 t(18) = 0.578, p > .05

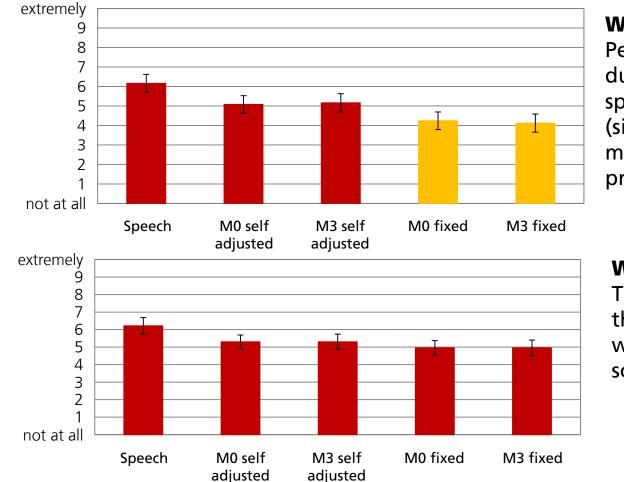


Annoyance (in the style of ISO/TS 15666)

What to do?



• 50 participants (25 per group; Ø 31,02 years; 46% female, 54% male)


Setting	dB(A) M0 A;B	Quantity M0	dB(A) M3 A;B	Quantity M3
Setting 1	0 (off)	0	0 (off)	1
Setting 2	41,7;36,4	0	41,3;38,4	2
Setting 3	45,9;40,6	5	45,5;42,6	3
Setting 4	49,9;44,6	11	49,7;46,8	9
Setting 5	54,2;48,9	9	54,1;51,2	10

Level and quantity of the selected sound masking setting (M0;M3 at workplace A and B

Error rate during serial recall at workplace A and B

Workplace A

Perceived annoyance due to background speech is reduced (significantly) if a masking sound is presented.

Workplace B

There is no effect at the workplace without individual sound masking.

Perceived annoyance at workplace A and B

Conclusion

- The VDI 2569 will be a step forward since it aims at reducing the negative impact of background speech and at improving acoustic privacy but
 - the effects of typical room acoustical measures are limited.
- The effect of sound masking is limited.
- Research is lacking which directly links room acoustical measures with health, performance or perception based outcome variables.
- It will not be possible to provide few simple target values which cover all kinds of different workplaces and guarantee for health, performance and well-being.

